
1 of 4 

Abstract- A model-driven, multiscale medical image 
segmentation system is presented. A tree representation is 
calculated for the image, using a modification of the immersion 
algorithm used for watersheds calculation. Segmentation is 
carried out by a matching process between the obtained tree 
and a tree model, which embeds the prior knowledge about the 
images. Tree matching is done in a multilevel way, processing 
different tree levels sequentially. For each level, an 
optimization process is performed, in which an error function, 
obtained from differences between the model and the 
segmented tree, is minimized. 13 parameters, concerning gray 
level, shape, position and connectivity, are used to characterize 
the objects. The model is obtained from a set of training 
images, assigning manual labels to tree nodes with a user 
interface designed especially for this purpose. Three-
dimensional, multicomponent images can be processed by 
adapting gradient and parameter calculation. The system has 
been tested for intracranial cavity segmentation in magnetic 
resonance images, giving accurate results. 

Keywords- Medical image analysis, model-driven segmentation, 
multiscale, watersheds 

 
I. INTRODUCTION 

 
Medical image segmentation remains an open problem 

in many different applications. Many researchers have given 
specific, ad hoc solutions for certain problems. General 
segmentation schemes, however, are far from being accurate 
for a majority of cases [1].  

It is unlikely that a correct automatic segmentation 
could be obtained without relying on prior knowledge about 
the images. For this purpose, the utilization of anatomical 
models is a good way to represent this knowledge [2], [3]. 

In the search for an adequate model of image structure, 
multiscale approaches have received special attention [4], 
[5]. Compact descriptions can be achieved by using singular 
points of the image. Several research studies have been 
carried out to study the behaviour of these points under the 
application of filters. Local extrema of the image can be 
used as the special points for such study: combined with 
mathematical morphology filters, it is possible to obtain a 
multiscale description [6], providing interesting advantages: 
local extrema suffer no displacement under the application 
of dilation-erosion filters; furthermore, a complete 
segmentation of the image, at different scales, is easily 
obtained by watersheds calculation [7]. 

A tree description is especially adequate to represent 
segmentations at different scales. This trees can be obtained 
efficiently by using a modification of the immersion 
algorithm for watershed calculation [8]. Each node of the 
tree corresponds to a minimum of the gradient, while its 
height in the tree indicates the corresponding scale. 

We have developed a system that obtains a complete 
segmentation of the image by calculating efficiently its tree 
representation, matching it then with a tree model, which 
contains the prior knowledge about the images. All the 
aspects of the process, including model calculation, are 
explained in the following section. 

 
 

II. METHODOLOGY 
 

A. Previous Steps 
 
Watersheds are calculated on the gradient of the original 

image. For multicomponent three-dimensional images, the 
vector gradient, as defined in [9] is used. Calculation of the 
gradient components in the three axes is carried out using 
the Sobel operator. 

The original images are filtered using an anisotropic 
three-dimensional filter [10] to reduce the effect of noise. 
After gradient calculation, a dual h-reconstruction [6] is 
applied to reduce the number of minima of the gradient 
image, which corresponds directly to the number of regions 
that result from the watersheds calculation. 

 
B. Tree Calculation 

 
The immersion algorithm calculates efficiently the 

watersheds of the image. This technique uses an analogy 
with the gradual immersion of a topological surface (the 
image, in which high gray levels are interpreted as high 
elevations, and vice versa), into water. We have 
implemented a modification of this technique, in which the 
catchment basins merge during the process to produce 
higher-level regions, as shown in fig. 1 for a one-
dimensional signal (two- or three- dimensional signals are 
processed in the same way). In this case, the normal 
immersion process would have produced four regions, 
labelled as 1-4 in fig. 1. Our modification maintains these 
regions, while adding high-level nodes 5 and 6. To avoid an 
excessive number of nodes, new ones are created only if 
necessary: in figure 1, when regions 5 and 6 merge, a link is 
created instead of a new node. The direction of this link 
(that is, which one of the two nodes becomes the father) 
depends on the extinction value of the corresponding 
minima, which in fig. 1 corresponds simply to the size of the 
region at the merging time: region 5 is larger in this case. 
Other extinction values, such as the dynamics (depth of the 
minima) can also be applied without changing the tree 
building algorithm.  
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Figure 1. Construction of the tree during the immersion 
process 

 
Complete segmentations can be obtained at different 

scales, by taking the nodes at the appropriate level and 
considering the regions associated with each one of them. In 
fig. 1, the coarsest scale is represented only by node 5, 
which covers all the domain, while the finest one 
corresponds to the output of the unmodified immersion 
procedure, that is, nodes 1, 2, 3, 4. 

 
C. Model Obtaining 

 
Image segmentation is achieved by transformation of 

the tree obtained by the modified immersion algorithm into 
a tree model, which embeds the prior knowledge about 
anatomical objects. This model is obtained from manual 
segmentation of a set of training images.  

Manual segmentation is carried out in the following 
way: a tree, corresponding to the first training image is 
constructed, as described. Manual labelling of the obtained 
nodes is then performed using an interactive user interface. 
Labels can be assigned at any scale level of the tree, thus 
minimizing segmentation time. After the first image has 
been accurately segmented, a pruning process is applied to 
obtain a simplified tree, in which each label corresponds to a 
single tree node. The tree topology obtained in this first 
segmentation is manually validated by the user, and can be 
modified to eliminate small nodes, which may appear at 
undesired locations of the tree. This topology is preserved 
throughout the rest of the training process. 

Once topology has been determined, the following 
parameters are obtained for each node of the model tree: 

 

• Gray level parameters: Mean value, standard deviation 
and maximum/minimum values. For multicomponent 
images, all those parameters are calculated for each 
image component. 

• Shape parameters: Area, perimeter, compactness, 
central second-order moments µ20 and µ02,, eccentricity 
and orientation of the major axis are used. In case we 
work with three-dimensional images, volume and 
external area are used instead of area and perimeter, 
second-order moments used are µ200, µ020 and µ002, and 
orientations of the main and the second axes are used. 

• Node centroid 
 

Parameters are calculated for all the training images, and 
their mean and maximum deviation are stored. The use of  
these values is explained further in the next section. 
 
D. Tree Matching 

 
To segment a new image, a matching process between 

its corresponding tree, calculated as described in section 
II.B, and the model for this type of images, is carried out. 
The usual situation is the following: the tree obtained from 
the new image, which contains hundreds of nodes, must be 
transformed into a much simpler model. So we can assume 
that the transformation of the new tree into the model is 
always a tree simplification. 

This simplification problem can be solved by 
performing a classification: the nodes of the tree model can 
be seen as classes, which must be assigned to the nodes of 
the new tree. Classification is carried out hierarchically, 
starting at the coarsest level of both trees and descending 
step by step. 

At each level, classification is carried out by an 
optimisation process, in which an error function is 
minimized. This error function quantifies the difference, at 
the current scale, between the tree model and the 
classification, and is defined as follows: 
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where K is the number of classes (nodes of the model at the 
current scale), F is the total number of parameters used 
(listed in section II.B), fij represents the value of parameter j 
in class i, and Φ is the weighting function that is shown in 
fig. 2. Two parameters must be determined: ∆ij,lim, which 
corresponds to the maximum “zero error” value, and the 
slope of the function, wij. They are determined from the 
manual segmentations of the training images, as follows:  
 

• fij(model) is the mean value of parameter j in class i of 
the images in the training set;  
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Figure 2. Weighting function used in 
error calculation  

 
• ∆ij,lim receives the value of the highest difference from 

the mean value of parameter j in class i . In this way, it 
is assured that all the manual segmentations given to 
the training images have zero error. 

• wij can be adjusted to assign different weights to 
different parameters or classes. In our case, wij is 
assigned the inverse of ∆ij,lim, so that differences 
produce a stronger penalization for parameters with a 
smaller spread.  

 
An important condition that should be achieved is 

connectivity, i.e., that each node in the model tree should 
correspond to a single connected component of the labelled 
image. So we define the connectivity parameter as follows: 
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where Amax comp(i) is the area of the maximum connected 
component of node i, and A(i) the total area of this node. 
For three-dimensional images, area is substituted by volume 
in (2).  

As we have mentioned, connectivity should always 
reach a value of 1 at the end of the optimisation process. A 
high weight of the connectivity does not assure that this 
condition is always reached and, moreover, causes local 
minima of the error function to appear. To prevent these 
complications, we apply initially a zero weight to the 
connectivity, until the process converges to a minimum. 
This weight is then progressively incremented until total 
connectivity is achieved. 

The optimization process, at each level, consists of a 
series of movements in the space of possible classifications. 
Two types of movements are allowed: 

• Label change: assignation of a different label to a node.  
• Node splitting: one of the nodes is partitioned into 

different classes, by taking all its direct descendants 
and assigning them different labels. 

Initial classification is important, as it can affect the 
process in two ways: avoiding local minima of the error 

function and reducing the number of movements necessary. 
Prior knowledge about the specific segmentation problem 
could be much useful to determine the initialization state. 
Anyway, to keep the segmentation system applicable to any 
type of medical image, we take as initial state the best one of 
a number of random solutions. 

The optimization technique used is the steepest descent 
algorithm: at each state, all its neighbors (that is, all the 
steps that can be reached with a single movement) are 
tested, and the one with the smallest error is taken. In case 
none of the neighbors has an error smaller than the current 
value, a minimum has been reached, so the optimization 
process stops. 

In order to prevent the system getting stuck in a local 
minimum, several initial values, taken at random locations, 
are tried. The final solution is the best one obtained from 
these different initial locations. 

 
III. RESULTS 

 
To demonstrate the applicability of the system to 

medical images, it has been used to segment the intracranial 
cavity (ICC) from magnetic resonance images of patients 
with multiple sclerosis. A simple tree was generated, in 
which the head is first extracted, followed by a classification 
in three classes: skin, bone and ICC. The tree model is 
shown in fig. 3. 

The system was trained using 10 images of different 
patients. One central slice, at approximately the same 
location, was taken from each study. The trained tree was 
then used to segment a different set of images. Some results 
are shown in fig. 4, where head and ICC contours are 
superimposed on the original images: as can be seen, results 
are qualitatively correct. Cases such as the lower left of fig. 
4, where cortical bone is thin, are especially challenging to 
conventional, gray-based only techniques, as it is difficult to 
separate ICC from bone. In our system, the introduction of 
shape parameters and the minimization of a global function 
allow to obtain correct results even in these cases. 
Calculation time needed to process the images in fig. 4 was 
between 1 and 3 minutes in a PC Pentium III. 
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Figure 3. Tree model used for 

segmentation of intracranial cavity 
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Figure 4. Results for head and ICC contours of different 
patients 

 
IV. DISCUSSION 

 
Many different applications of medical images require 
segmentation of the anatomical structures. Specific systems 
have been developed for special applications. However, if 
segmentation of a different object is needed, or even if the 
acquisition parameters vary, application-specific systems 
must be deeply redesigned for the new application 
We have developed a system that separates the segmentation 
process from the a priori knowledge of the images (the 
model), so that, if we have to segment a different type of 
image, only this model must be recalculated. Furthermore, 
we have designed an efficient way to determine the models, 
starting from the original tree. This model calculation 
interface can also be used independently as a semiautomatic 
segmentation system. 

The system can work on three-dimensional, 
multicomponent images. Processing time, however, may be 
a problem if very big data volumes are used. Alternatives for 
parallel calculation of the data are being studied. 

The system presented has demonstrated its performance 
in segmentation of the intracranial cavity from MR images. 
A detailed quantitative evaluation is being carried out at the 
moment. Different applications, such as liver segmentation 
from CT-MR images, will also be tested. 

 
IV. CONCLUSION 

 
A new, general purpose medical image segmentation 

system has been presented. The use of a tree model makes 
the system easily applicable to different anatomical 
locations or modalities. The system works on 3-D, 
multicomponent images, thus taking profit of multimodal 
patient explorations. Initial results have demonstrated the 
applicability of the system to specific medical problems. 
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